Top Down Proteomics at High Magnetic Field

Jeremiah D. Tipton, Alan G. Marshall

National High Magnetic Field Laboratory, Tallahassee, FL Florida State University, Tallahassee, FL

John C. Tran, Ji Eun Lee, John F. Kellie, Adam Catherman, Neil L. Kelleher

Chemistry Department, University of Illinois Urbana-Champaign, Urbana, IL

> Atlanta, GA October 7th, 2009

Modern Top Down Proteomics Work Flow

Top down Proteomics Instrumentation: Modified 14.5 T LTQ-FT

Schaub, T.M.; Hendrickson, C.L.; Horning, S.; Quinn, J.P.; Senko, M.W. and Marshall, A.G. Anal. Chem., *80*, 3985 - 3990 (2008)

Top down Proteomics Instrumentation: Modified 14.5 T LTQ-FT

Ion Storage Capacity: 14.5 T LTQ-FT

Octopole Fills

Top down Proteomics Instrumentation: Custom built 9.4 T FTICR

Kaiser, N.K.; Quinn, J.P.; Blakney, G.T.; Hendrickson, C.L. and Marshall, A.G., Design and Performance of a Novel 9.4 Tesla FT-ICR Mass Spectrometer for Proteome and Petroleum Analysis 57th Amer. Soc. Mass Spectrom. Annual Conf. on Mass Spectrometry & Allied Topics, Philadelphia, PA, May 31-June 5 (2009)

Top down Proteomics Instrumentation: Resonant vs Beam-type CID b116 LTQ CID (14.5 T LTQ - FTICR) 14+ charge state b116 b117 b118 m/z = 987.91 40S Ribosomal Protein (Yeast) b114 b115 b119 b115 0112 b114 **y12** b110 b111 0112

900

Moving up the Molecular Weight Ladder On-line nano-LC / Top-3 data dependent MS/MS

Moving up the Molecular Weight Ladder On-line nano-LC / Top-3 data dependent MS/MS

Moving up the Molecular Weight Ladder On-line nano-LC / Top-3 data dependent MS/MS

$$\begin{array}{l} b_{1} & - A - E - L - I - Q - K - K - L - Q - G - E - V - E - K - Y - Q - Q - L - Q - K - D - L - S - K - S - M - S - G - R - Q - y_{99} \\ b_{31} & - K - L - E - A - Q - L \end{array} \\ \begin{array}{l} T + E + N + N + I + V + K - E + L + A + L + L + D + G - S - N + V + V + F - K - L + L + G - y_{69} \\ b_{61} & + P - V - L - V - K + Q - E - L - G - E + A - R - A - T - V - G - K - R - L - D + Y - I - T - A - E + I - K - R - Y - E - y_{39} \\ b_{91} & - S - Q - L - R - D - L - E - R - Q - S - E - Q - Q - R - E - T - L - A - Q - L - Q - Q - E - F - Q - R - A - Q - A + A + Y_{9} \\ b_{121} & - K - A - G - A - P - G - K - A - Y - G - K - R - V - G - K - R - L - D + Y - I - T - A - Q - A + A + Y_{9} \\ \end{array}$$

Top Down Proteomics of Different Cell States

Pesavento, J. J et al. *Mol. Cell. Biol.* 2008, 468-486 http://www.bc.biol.ethz.ch/people/groups/gerlichd/people/schmitzm

PTM Changes (Phosphorylation)

On-line nano-LC / SIM Zoom Map MS/MS

On-line nano-LC / SIM Zoom Map MS/MS

b₁ - V - R - V - A - I - N - G - F - G - R - I - G - R - L - V - M - R - I - A - L - S - R - P - N - V - E - V - V - A - L - Y₃₀₂ b₃₁ - N - D - P - F - I - T - N - D - Y - A - A - Y - M - F - K - Y - D - S - T - H - G - R - Y - A - G - E - V - S - H - D - y₂₇₂ b₆₁ - D - K - H - I - I - V - D - G - K - K - I - A - T - Y - Q - E - R - D - P - A - N - L - P - W - G - S - S - N - V - D - y₂₄₂ b₉₁ - I - A - I - D - S - T - G - V - F - K - E - L - D - T - A - Q - K - H - I - D - A - G - A - K - K - V - V - I - T - A - Y₂₁₂ b₁₂₁ - P-S-S-T-A-P-M-F-V-M-G-V-N-E-E-K-Y-T-S-D-L-K-I-V-S-N-A-S-C-T- y₁₈₂ b₁₅₁ · T - N - C - L - A + P - L - A - K - V - I - N - D - A - F - G - I + E - E - G - L - M - T - T - V - H - S - L - T - A - y₁₅₂ b₁₈₁ - T-Q-K-T-V-D-G-P-S-H-K-D W-R-G-G-R-T-A-S-G-N-I-I P-S-S-T-G-A-y₁₂₂ b₂₁₁ - A - K - A - V - G - K - V - L - P - E - L - Q - G - K - L - T - G - M - A - F - R - V - P - T - V - D - V - S - V - V - y₉₂ - D-L-T-V-K-L-N-K-E-T-T-Y-D-E-I-K-K-V-V-К-А-А-А-Е-G-К-L-К-G-V-У₆₉ **b**₂₄₁ - L - G - Y - T - E t D - A t V t V t S t S t D - F - L - G - D - S - H - S - S - I - F - D - A - S - A - G - I - Q - L - Y₃₉ **b**₂₇₁ b₃₀₁ - S-P-K-F-V-K-L-V t S-W t Y-D-N-E-Y-G-Y-S-T-R-V-V-D-L-V-E-H-V-A-К-Уэ **y**₁ b₃₃₁ - A -

On-Line LC with Fraction collection

On-Line LC with Fraction collection

Enolase 2 ProSightPC 2.0 \rightarrow 2 x 10⁻⁷

b₁ - A - V - S - K - V - Y - A - R - S - V - Y - D - S - R - G - N - P - T - V - E - V - E - L - T - T - E - K - G - V - F - Y₄₀₇ - R- S- I - V- P- S- G- A- S- T- G- V- H- E- A- L- E- M- R- D- E- D K- S- K- W- M- G- K- G- У₃₇₇ **b**₃₁ - V - M - N - A - V - N - N - V - N - N - V - I - A - A - A - F - V - K - A - N - L - D - V - K - D - Q - K - A - V - D - Y₃₄₇ **b**₆₁ **b**₉₁ - D-F-L-L-S-L-D-G-T-A-N-K-S-K-L-G-A-N-A-I-L-G-V-S-M-A-A-A-R-A- 9317 - A - A - A - E - K - N - V - P - L - Y - Q - H - L - A - D - L - S - K - S - K - T - S - P - Y - V - L - P - V P - F - ^y287 **b**₁₂₁ - L - N - V - L - N - G - G - S - H - A - G - G - A - L - A - L - Q - E - F - M - I - A - P - T - G - A - K - T - F - A - Y₂₅₇ **b**₁₅₁ - E - A - M - R - I - G - S - E - V - Y - H - N - L - K - S - L - T - K - K - R - Y - G - A - S - A - G - N - V - G - D - y₂₂₇ **b**₁₈₁ - E-G-G-V-A P-N-I-Q-T-A-E-E-A-L-D-L-I-V-D-A-I-K-A-A-G-H-D-G-K- 9197 **b**₂₁₁ - V-K-I-G-L-D-C-A-S-S-E-F-F-K-D-G-K-Y-D-L-D-F-K-N-P-E-S-D-К-S-У167 **b**₂₄₁ - K-W-L-T-G-V-E-L-A-D-M-Y-H-S-L-M-K-R-Y-P-I-V-S-I-E-D-P-F-А-Е-У137 **b**₂₇₁ - D - D - W - E - A - W - S - H - F - F - K - T - A - G - I - Q - I - V - A - D - D - L - T - V - T - N - P - A - R - I - У₁₀₇ **b**₃₀₁ **b**₃₃₁ - A-T-A-I-E-K-K-A-A-D-A-L-L-L-K-V-N-Q-I-G-T-L-S-E-S-I-K-A-A-Q- У77 - D-S-F-A-A N W G-V-M-V-S-H-R-S-G-E-T-E-D-T-F-I-A-D-L-V-V-G-L- 947 **b**₃₆₁ **b**₃₉₁ - R - T - G - Q - I - K - T - G - A - P - A - R - S - E - R - L - A - K - L - N - Q - L - L - R - I - E - E - L - G - Y 17 **y**₁ **b**₄₂₁ - D- K- A- V- Y- A- G- E- N- F- H- H- G- D- K- L-

Asynchronous and M Phase HeLa Cells High Molecular Weight

Asynchronous and M Phase HeLa Cells High Molecular Weight

On-line nano-LC Benchmark: MS detection 1.2 pmol on column – C_4 75 μ m i.d.

Off-line Fraction Collection – MS/MS

Human Proteome

High Throughput Top Down Proteomics High Mass Range

14.5 T

Fraction-Collection

Conclusions

Orthogonal separation, IEF – GELFrEE – RP, provides improved separations to deal with sample complexity.

Different RP chromatography conditions yield improved results based on the molecular weight of the proteins found in the sample.

Different molecular weight fractions dictate the instrument scan mode and tune parameters (LTQ-FT).

Beam-type CID provides increased information over Resonante-type CID.

Clean solvents and chromatography material are NEEDED!

Acknowledgements

