Quantitative Studies of Cancer Epigenetics Using Label-Free Top Down and Bottom Up to Interrogate Histone Modifications

Jeremiah D. Tipton¹, Jennifer Hobbs², Stephen M. M. Sweet¹, Yupeng Zheng¹, Kenneth R. Durbin¹, Mingxi Li¹, James P. Chandler², and Neil L. Kelleher¹

(1) Departments of Chemistry and Molecular Bioscience and the Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208; (2) Department of Neurological Surgery, Northwestern University, Chicago, IL 60611

Overview

- \rightarrow nLC QqQ assay developed for studying multiple methylation (Lysine 9, 27, 36, and 79) states of histone H3.
- \rightarrow Technical triplicates and biological duplicates have CVs of 1 to 15 %, depending on signal magnitude; percent standard deviations between 0.25 and 2.00 %, dependent on the limit-of-quantitation.

Introduction

Changes in histone modifications (methylation, phosphorylation, etc.) may be acetylation, characterized by mass spectrometry.[1, 2] This includes all histones (H1, H2A, H2B, H3, and H4) and their combinatorial modification patterns, which may be described as a the "histone code".[3] Here, we report the optimization and application of nano-liquid chromatography triple quadrupole mass spectrometry (nLC QqQ MS) to measure methylation (unmodified, mono-, di-, and tri-) and acetylation changes on Histone H3 lysines 4, 9, 14, 27, 36, and 79 – along with acetylation of K9 and K14. The assay is applied to histones extracted from many different types of cancer, such as glioma and leukemia. The result is a relative quantitation assay to complement methylation profiling via top down MS.

[1]Garcia B.A., et al., NatureMethods, 4, 487-489, 2007 [2]Plazas-Mavorca, M.D., et al., JPR, 8, 5367-5374, 2009 [3]Jenuwein T., et al., Science, 293, 1074-1080, 2001

Methods

Histones were extracted with a reported acid extraction protocol.[4] A small portion of extract from some samples were profiled by on-line top down proteomics with a 12 tesla linear ion trap FT ICR mass spectrometer to estimate the number of methylequivalents. The rest of the sample was processed through a standard propionylation/trypsin digestion protocol.[5] LC-ready samples (~1ug/uL on column) were analyzed with a TSQ Quantum Ultra triple quadrupole mass spectrometer in technical triplicate. **Optimization of MRM transitions for the histone** peptides of interest was performed with a combination of standard synthetic peptides, Skyline,[6] and Pinpoint software. Final results for relative quantitation were generated by custom algorithms and scripts.

[4] Martinez-Garcia, E., et al., Blood, 117, 211-220, 2010

[5] Garcia, B.A., et al., NatureProtocols, 2, 933-938, 2007 [6] MacLean, B., et al., Bioinformatics, 26, 966-968, 2010.

On-line (nanoLC) Histone H3 Profiles

To the left, H3.2 (red), to the right H3.1 (orange). The top spectra are histone extracted from glioblastoma; the bottom spectra are histone extracted from HeLa S3 cells. The two forms were separated (~5 ug of total protein from acid extract) on PLRP-S material. The exact mass of the resulting deisotoped and deconvoluted spectra revealed methylation (mass difference of 14 Da). There is an apparent shift in the amount of methylation for glioblastoma and HeLa derived H3.2 and H3.3.

800 802 804 816 818 820 814

QqQ MRM Label Free Relative Quantitation

K4 un		14.39												
K4me1		16.48		Per	cent	Rela	tive	Οςςι	Ipan	cy fo	r K9	K14	Pept	ide
K9un - K14un		17.69		Total	4un	4Ac	14un	14Ac	14un	14Ac	14un	14Ac	4un	4Ac
K9un – K14ac		16.85		Protein Amount	un K1	un K1	ne 1K	ne1 K	ne2 K	ne2 K	ne3 K	ne3 K	Ac K1	Ac K1
K9me1-K14un		19.37		(µg)	K9	K9	K9n	K9n	K9n	K9n	K9n	K9n	K9	K9
K9me1-K14ac		18.53		1.00 1.00	26.58 30.17	14.51 16.82	18.71 20.03	12.59 12.02	13.59 9.30	7.49 5.65	3.73 2.90	0.28 0.22	0.93	1.61 1.76
K9me2-K14un		14 34		2.00	26.34	14.68	18.80	12.94	12.95	8.04	3.51	0.29	0.99	1.46
K9me2-K14ac		40.00		4.00	25.28	14.00	20.89 19.55	12.30	15.23	6.77	4.08	0.30	0.98	1.47
KQme3-K14un		13.62		0.50 0.50	28.34 30.73	13.27 13.52	18.20 19.11	12.81 15.08	11.65 10.35	9.39 5.51	3.71 3.00	0.33 0.20	0.92	1.38 1.47
Komo2 K14oo		13.63		1.00	27.34	13.06	18.83	13.12	12.79	8.46	3.66	0.29	0.91	1.52
K9111e5-K14ac		40.70		1.00	29.52 27.94	13.91 13.80	19.40	14.48 12.54	10.68 12.57	5.84 8.62	3.37 3.64	0.20	0.97	1.60
K9ac-K14un		16.73		1.50	28.53	14.80	20.49	15.78	9.35	5.29	2.86	0.25	1.03	1.61
K9ac-K14ac		17.86		2.00	27.42	15.43	19.41	13.60	11.25	7.49	3.19	0.35	1.02	1.44
K27un-K36un		15.89		0.33	27.34	13.71	21.51	12.08	11.82	7.20	3.50	0.23	1.00	1.61
K27un-K36me1		20.29		0.33	32.09 28.71	13.05 14.02	19.28 19.53	12.33 12.76	10.60 11.25	7.37 7.59	2.78 3.39	0.23 0.28	1.00 0.98	1.28 1.49
K27un-K36me2		21.19		1.00	28.93	15.76	19.74	15.26	9.07	5.51	2.87	0.27	0.98	1.61
K27un-K36me3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18.71		0.25	29.39 27.43	14.41	19.39	14.06	11.19	7.16	3.31	0.24	1.13	1.58
K27mo1 K36un	/(/	18 72		0.50 0.75	26.51 28.24	13.50 13.01	18.12 18.72	13.14 13.40	13.40 12.45	8.54 7.93	3.97 3.61	0.30 0.31	0.91 0.90	1.62 1.43
K2/IIIeI-K300II		10.72		1.00	27.39	14.03	20.03	13.53	11.39	7.55	3.43	0.30	0.87	1.49
K27me1-K36me1		21.49		AVG	28.09	14.25	19.35	13.32	11.61	7.20	3.39	0.27	0.98	1.52
K27me1-K36me2		22.44		SID	1.61	1.02	0.87	1.04	1.53	1.23	0.36	0.04	0.07	0.11
K27me1-K36me3		19.97			K9un	K9me1	K9me2	K9me3	K9ac				K14un	K14ac
K27me2-K36un	<u> </u>	19.98		<u>Sum</u> Error	42.34	32.67	18.81	3.67	2.51			<u>Sum</u> Error	63.43 2.42	36.57 1 91
K27me2-K36me1		17.88		<u>CV%</u>	4.50	4.16	10.47	9.79	5.23			<u>CV%</u>	3.81	5.24
K27me2-K36me2		18.78												
K27me2-K36me3					P	erce	nt Re	lativ	e Occ	upar	ncy K	9 and	d K14	
K27me3-K36un	Å	17.99		_ 70).00 ₁									
K27me3-K36me1		17.95		banc)	0.00 -								Ť.	
K27me3-K36me2	\longrightarrow	18.85		⁷³ 50	0.00 -									
K27me3-K36me3	`	•		elative	0.00		-							Ť.
K79un			30.53	eut Ke	0.00 -			Ŧ						
K79me1			32.09	Perc 10	0.00 -									
K79me2		X	28.50	(0.00	KQue	Komo	1 K0m	2 K0m	03 KO	20		1/100-4	(1/126
K79me3		XXX	25.76		Mat	hylat	ion /		tion	es Ky		K Vcipo		1 /I

To the left, the percent relative occupancy of K9/K14 from 22 injections of a single sample over one week. The sample was diluted to 4 different concentrations prior to 4 different injection volumes. The final estimated amount of protein is found in the left column. The percent occupancy is relative calculated by adding all of the peak areas for the signal associated with peptides that K9/K14, then contain dividing each individual peak area by the total sum. Remember, trypsin will not likely cleave propionylated or hyper methylated lysine. At different concentrations of total protein loaded, the % relative standard deviation for each peptide is typically less than 2.0%. Further, the coefficient of variance is less than 10 %.

To the left, the percent relative occupancy plotted for the above presented final and standard averages deviations. The system is stable time and over repeated injections. Note, the propionylation of lysine will change the ionization and fragmentation efficiencies.

Results - Continued

Percent Relative Occupancy

The above plot presents the methylation status of K9/K27/K36/K79 (and acetylation status for K9/K14) for histone extracted from glioblastoma and HeLa S3 cell lines. Top down analysis revealed a mixed mode of differences for methylation equivalents. The QqQ analysis of peptides further illustrates the mixture of differences between the two sample types. The above table is percent relative occupancy for glioblastoma subtracted from the hela derived samples (for each mark). Thus, the K9 site reveals less methylation for glioblastoma.

Coefficient of Variance	K9un	K9me1	K9me2	K9me3	K9ac	K14un	K14ac	K27un	K27me1	K27me2	K27me3	K36un	K36me1	K36me2	K36me3	K79un	K79me1	K79me2	K79me3
(%) CV Glio IV	4.50	4.16	10.47	9.79	5.23	3.81	5.24	4.99	4.21	7.10	13.49	6.86	8.52	5.06	4.05	1.54	9.44	12.56	64.36
(%) CV HeLa	4.11	6.44	14.25	9.82	8.34	6.34	9.41	2.61	2.68	3.03	5.59	2.65	3.26	2.40	2.91	1.27	7.17	15.56	45.82

The percent coefficient of variance (above table) for both samples is presented above. Note, the % CV increases with a peptide of low relative abundance due to the lower limits-of-detection and lower limits-of-quantitation for methylation marks that are of low biological abundance.

Conclusions

A robust nLC-QqQ assay has been developed for the analysis of histone H3.(1,2,3) methylation and acetylation site specific status. Further, all transitions and retention times were verified with synthetic peptides or by accurate mass measurement with a LTQ-FT. Finally, the assay is stable over different concentrations of total protein loaded and multiple injections. We are currently applying the assay to understand the epigenetic causes of cancer.

Acknowledgements

NIH GM 067193-09, Northwestern University, and The Chicago Biomedical Consortium which is supported by the Searle Funds at The Chicago Community Trust.