Untargeted and Targeted Metabolomic Workflows Bioanalytical Tools for Clinical Research

Designed for non-LC MS experts – What problems can we use this for?

General Metabolomics Workflow – Agilent Technologies Centric Delivered February 2024

Jeremiah D. Tipton, Ph.D.

Director and Applications Manager Applied Omics & Life Sciences LLC Agilent Technologies Applications Contractor

Multi-OMICS Research – Focus on Metabolomics

Presentation Outline

- I. Metabolomics Workflow Overview
- II. Hypothesis / Question(s) and Pathway

(Workflow Steps and Experimental Design)

- III. Types of Samples and Extraction (A)
- IV. "Feedback" Loops with Results for Decisions
- V. Metabolome Chemical Diversity and Chromatography (B)
- VI. Why the 6546 QTOF LC MS system (C)
- VII. Bioanalytical Approach to Oncology Systems
- VIII. Example Results and Oncology Applications

Metabolomics Is Growing

Pubmed: Metabolomics OR Metabonomics OR Metabonome

Google Scholar Search by Year Metabolomics

2014 - ~20,000 2018 - ~43,700 2020 - ~59,000 2023 - ~83,600

Omics Research and Life Sciences – The Questions We Ask

Multi-OMICS Research – Focus on Metabolomics

Metabolomics

BIOCHEMICAL VARIATION INTEGRATES GENES AND ENVIRONMENT

Application Teaser *Pivot from the workflow for a moment*

Application Note Metabolomics

¹³C Glucose Qualitative Flux Analysis in HepG2 cells

- Data Collected with a 6546 LC/Q-TOF
- Flux Analysis in human carcinoma cell lines with U-13C glucose tracer.
- Effect of Pyruvate carboxylase knockdown on glucose flux in TCA cycle in HepG2 cells.
 - Philosophy Think in terms of:
 - sample type
 - pathways of interest
 - biomolecular pathways
 - related to type of oncology research

Example Application

Think in terms of Bioanalysis

Application Note

Metabolomics

¹³C Glucose Qualitative Flux Analysis in HepG2 cells

PCDL with retention time

Metabolites in PCDL will have:

- A chemical formula to generate the right isotope pattern
- An identifier ID such as METLIN, HMDB, or KEGG, and a CAS number to allow correct mapping to the metabolic pathway.
- A retention time, to avoid false identification, especially in complex samples. The retention time can be updated if needed.

Profinder

- Profinder uses the metabolite formulas in the PCDL to extract the isotopologues for a given metabolite.
- Isotopologues for a given metabolite must have the correct mass and retention time as well as the same chromatographic peak shape.
- Natural isotope correction is performed automatically to provide the net labeling.
- Results can be exported to Omix
 Premium.

Pathway to PCDL

This tool will export all metabolites in the pathway of choice, together with their masses and identifier to a PCDL format.

Omix Premium

- Omix Premium provides an easy way to visualize isotopologue data on a chosen metabolic pathway.
- Pathways of choice are first selected, then Profinder results are automatically mapped to the pathways.
- Sample group information is imported with the Profinder results.

Software for Data Extraction and Qualitative/Quantitative Analysis

Think in terms of Bioanalysis

- Philosophy - Think in terms of:

- sample type
- pathways of interest
- biomolecular pathways
- related to type of oncology research

One of several streamlined workflows for data extraction and analysis → Flux and metabolism studies

Application Note Metabolomics

¹³C Glucose Qualitative Flux Analysis in HepG2 cells

Figure 8. Omix Premium software showing the TCA cycle and related metabolites labeling

Software for Data Extraction and Qualitative/Quantitative Analysis

Think in terms of Bioanalysis

- Philosophy - Think in terms of:

- sample type
- pathways of interest
- biomolecular pathways
- related to type of oncology research

One of several streamlined workflows for data extraction and analysis → Flux and metabolism studies

What is your pathway of choice?

See this as finite amount of possibilities in chemical space.

Change in molecule metabolism (errors) for oncology seen in pathway. often more than one molecule

http://kcampbell.bio.umb.edu/lecturel.htm

What is your pathway of choice?

See this as finite amount of possibilities in chemical space

Only so many ways that we can put molecules together

Endogenous vs Exogenous Molecules

1 difficulty in Clinical Research for small molecules is the Exogenous (Life Style) inputs from patients in cohorts

What is your pathway of choice?

Samples and Preparation

Omics Research and Life Sciences – The Questions We Ask

Sample Type

- Blood Plasma/Serum
- Organ Tissue
- Siliva
- Urine
- etc.

Sample Types and Matrix Effects

Largest Variance (When Standard Methods Used) is due to possible "Matrix Effects"

i.e. Blood Mouse vs Humani.e. Blood from different cancer typei.e. Tissue vs Cell Culture Modeli.e. Tissue vs Bloodi.e, Tissue A vs Tissue B

Part of development and a feedback loop early during experiment development

Research to Translational to Diagnostic → Plan – Develop – Implement – (Validate?)

The Power to Design your own Workflow for your system \rightarrow or adopt previous standard workflows from the community.

What is the end goal of your metabolomics experiment – *avoid fishing expeditions*. But don't be scared to design and optimize. (*It's called research not search*)

Sample Type Preparation Protocols: 20+ years of protocol development

Plasma/serum

- 100 μL of plasma/serum
- 20 μL of IS solution
 - 40 μg/mL Trp-D₃
 - 4 μg/mL Leu-D10, Creatine-D3, Caffeine-D3 and Salicyclic acid-D4
- 800 μL of 8:1:1 ACN:MeOH:Acetone)
 - Chill for 30 min in fridge
- Mix
- Centrifuge 20,000 rcf, 10 min, <10C
- Transfer 750 µL of supernatant
- Dry with gentle stream of N₂
- Reconstitute in 100 µL of 0.1% FA in water (Mobile phase A)

Brain tissue

- 1-10 mg of brain tissue
- 500 μL of chilled 50/50 MeOH/water w/10mM Amm Acetate
- 20 μL of IS solution
- Homogenize
- Centrifuge, transfer 450 μL of supernatant
- Dry and reconstitute in 50 µL (Mobile phase A)

Plant tissue (stool is similar

- 30 mg of plant tissue
- 20 μL of IS mix
- 750 μL of Meoh/750 μL of 10mM Amm Acetate
- Vortex, sonicate
- Centrifuge 10 min, 20,000 rcf
- Transfer 1 mL of supernatant to LC vial

cols: 20+ years of protocol development

Chromatographic conditions and MS parameters

Table 1. Agilent 1260 Infinity II Prime LC conditions.

Parameter	Value
Analytical Column	Agilent InfinityLab Poroshell 120 HILIC-Ζ, 2.1 mm × 150 mm, 2.7 μm, PEEK-lined (p/n 673775 924)
Column Temperature	25 °C
Injection Volume	10 µL
Autosampler Temperature	4 °C
Needle Wash	6 seconds in wash port (50:50 water/methanol)
Mobile Phase	 A) 10 mM ammonium acetate in water with 2.5 μM Agilent InfinityLab deactivator additive, pH = 9 B) 10 mM ammonium acetate in water/acetonitrile 15:85 (v:v) with 2.5 μM InfinityLab deactivator additive, pH = 9
Flow Rate	0.25 mL/min
Gradient Program	Time %B 0.00 96 1.00 96 4.50 88 7.50 88 8.00 86 13.00 86 16.00 82 22.00 65 23.00 65 23.50 96 25.00 96
Stop Time	25.00 min
Post Time	3.00 min
Observed Column Pressure	170 to 330 bar
	•

Sample Type Preparation Protocols - 20+ years of protocol development

Agilent Specific Workflows for Metabolomics – Reproducibility

Figure 2. Metabolomics sample preparation workflow.

Figure 3. Agilent Captiva EMR-Lipid cartridges.

Methods to suit your needs

To get you started with this complex method development process, Agilent has a variety of liquid chromatography solutions for any skill level. These include: (1) the biocrates kits, (2) the ion-pairing dMRM solution, and (3) HILIC Z dMRM solution. A comparison of the different solutions is displayed in Table 1.

1. The biocrates AbsoluteIDQ p180 (Figure 7) and MxP Quant 500 (Figure 8) kits use the Agilent 1290 Infinity II LC and the Agilent 6470 triple quadrupole LC/MS, and the 6495C triple quadrupole LC/MS system, respectively, providing a simple, reproducible, and curated method by supplying consumables and software to get up and running quickly. These highly validated and easy-to-use kits provides basic metabolism and lipid information, including over 100 small molecules and 500 lipids.

2. With highly stable chromatography and high sensitivity, the ion-pairing Metabolomics dMRM Database and Method offers day-in and day-out performance for long sample runs. Using the 1290 Infinity II LC and 6470 triple quadrupole LC/MS or 6495C triple quadrupole LC/MS, this method provides good coverage of amino acids, the TCA cycle, and other energy metabolism pathways, with over 200 small molecules in the database. It must be noted that when using ion-pairing reagents, a dedicated LC system must be considered, as removing the ion-pairing reagents from the system is very challenging, and residual effects from reagents may linger for the lifetime of the LC.

3. The HILIC-Z dMRM method offers an extended coverage of core metabolic pathways and biological building blocks using the Agilent 1290 Infinity II LC or 1290 Infinity II bio LC system coupled with the 6495C triple quadrupole LC/MS. With over 400 small molecules in the database, this method offers more comprehensive biological information without the use of ion-pairing reagents. The Agilent InfinityLab Poroshell 120 HILIC-Z column allows for superior retention of polar metabolites using MS-compatible solvents, but also requires chromatographic expertise and the ability to follow method details exactly.

Figure 7. The Biocrates AbsoluteIDQ p180 kit.

Figure 8. The Biocrates MxP Quant 500 kit.

Sample Type Preparation Protocols - 20+ years of protocol development

NIH Plasma Standards – Method Development

NIST[®] SRM[®] 1950

<u>Website – Click Here</u>

General Metabolomic Workflow and Drug Discovery

Bioanalysis view with the LC MS Metabolomics Workflow

Discovery and Targeted Workflows for Metabolomics

Relate to the Overall Drug Discovery Workflow

Discovery and Targeted Workflows for Metabolomics Relate to the Overall Drug Discovery Workflow

Where are we in the drug discovery process?

Think in a longitudinal mindset – what is the answer provided from my small molecule measurements

"Metabolomics in the clinical research laboratory is driven by understanding biological process and their relevance to understanding qualitative and quantitative clinical data and outcomes.

For example, a clinical metabolite panel of catecholamines may focus on quantitation of dopamine, epinephrine, and norepinephrine: the three most common biomarkers of stress.

However, in a translational laboratory, the focus would be on the larger biosynthetic pathway for catecholamines to understand the underlying production of the neurotransmitters, their interactions, and their mechanistic relationships as a marker of stress.

Analytical challenges in a clinical research or translational laboratory are ultimately driven by the biological process and clinical chemistry, which need to be understood. Knowledge of not only the chemistry of the clinical panel, but a broader perspective of metabolism is required to help solve analytical challenges and maximize study return of investment."

Chromatography - The focal point of experimental design

What is molecular class of interest? (Targeted) Mapping Metabolomic Profile of System? (Global) Mechanism of Action Study based on Drug Treatment and Time Points?

Longitudinal Study? – Lock in methods first for downstream experiments Movement from **Discovery** to **Translational** to **Diagnostic**

Bioanalysis View – <u>Match the Molecular System to the Chromatography Method(s)</u> Liquid Chromatography and *Multiple Experiment Types*

Choice in Chromatography and Method

- Reversed Phase C18 Most Common
- Common Gradients to need of experiment i.e., 3, 5, 15, 25, etc. minute gradients.
- Discovery or Profile Metabolomics.
 Perform several "experiments" on the same sample for full LCMS *metabolomic profile* i.e. RP Chrom (+/-)
 or NP/HILIC (+/- modes)
- More Targeted Pathway and/or class of molecules
 Perform single, specific method for molecules of choice
- Molecules in pathways move together

Instrument, Measurement, and Data Analysis

Mass Spectrometry Measurement - Why the 6546 LCQ-TOF?

Accurate mass measurement improves several quality attributes of the measurement for informatics.

Rapid peak extraction for informatics.

Reduce the number of possible answers for small molecule identification.

Resolving power for coeluting species.

5x in scan dynamic range.

											🖳 Spectra Viewer — 🗆 🗙
Find Compounds D C A R H											Create Add Edit Delete Spectra Spectra Spectra
Compounds search situate	obility impo	оп.		T 1							Acquired spectra
Enter one attribute per line.	Must also co	ontain	ion search mode	Tolerances	10.0	O D	Advanced Sear	ch			Compound Name Ion Species Precursor Ion CE Polarity
Examples: 140-87-4		-	Include neutrals	Mass:	10.0 O p	pm () mDa					
Glycine 200.01	Must not con	ntain	Include anions	RI:	0.1 min						
Note: Formula must be exact for searching.	-	A	Include cations	RI:	10.00						
	2008 W/ab	With CCS									likran enertra
		spectra 📋 with CCS									
Compound Results: 30448 hits		Detertio	-								Compound/Name Precursor Ion CollisionEnergy IonPolanty IonMode Species
Name	Formula	Mass Time	n Cation Ani	on CAS	ChemSpider	PubChem	METLIN	KEGG	HMP	LMP	N-Desmethylclob 287.05818 10 Positive ESI (M+H)+
Testosterone acetate	C21H30O3	330.2195		<u>1045-69-8</u>	<u>83191</u>		<u>41854</u>	<u>C03027</u>	HMDB62780	LMST02020057	N-Desmethylclob 287.05818 20 Positive ESI (M+H)+
ε-Caprolactam	C6H11NO	113.08406		<u>105-60-2</u>		<u>7768</u>	<u>44753</u>	<u>C06593</u>	HMDB62769		N-Desmethylclob 287.05818 40 Positive ESI (M+H)+
(±)12-HETE	C20H32O3	320.23515		<u>71030-37-0</u>	10500	17510	<u>3841</u>	<u>C14777</u>	HMDB62287	LMFA03060088	N-Desmethylclob 285.04363 10 Negative ESI (M-H)-
Acadesine	C9H14N4O5	258.09642		2627-69-2	16060	<u>17513</u> 95194	4102	C12079	HMDB62179	I MPD010405000	
Palmitic acid methyl ester	C17H34O2	270 25588		112-39-0		00104	44858	C16995	HMDB61859	<u>EMI 11010405000</u>	
L-alpha-Acetyl-N-nomethadol	C22H29NO2	339.21983		43033-71-2			71283	<u>C16661</u>	HMDB61169		Graphics Mass Lists
4-Hydroxytriazolam	C17H12Cl2N4O	358.03882		65686-11-5			2915		HMDB61052		Acquired spectrum
Noralfentanil	C16H24N2O2	276.18378		<u>61086-18-8</u>			<u>854</u>		HMDB61010		
Desmethylsertraline	C16H15Cl2N	291.05816		<u>87857-41-8</u>			2420		HMDB61002		5
5-Hydroxypropafenone	C21H27NO4	357.19401		<u>86384-10-3</u>			<u>2150</u>		HMDB60988		
N-Desmethylclobazam	C15H11CIN2O2	286.05091		22316-55-8			<u>1864</u>		HMDB60970		, 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
1-Hydroxytacrine	C13H14N2O	214.11061		<u>12402/-4/-0</u> 202.49.0			2620		HMDB60963		m/z
Buppeperphine 2.0. duouropide	C18H21CIN2	300.13933		<u>303-46-0</u> 101224.22.0			1432		HMDB60928		+ESI MS2 QTOF FV=150 CE=10 (M+H)+
Etodolac glucuronide	C23H29NO9	463 18423		79541-43-8	23992868		2637		HMDB60916		245.04762 287.05820
11-Hydroxytetrahydrocannabinol	C21H30O3	330.2195		36557-05-8			1462		HMDB60906		<u>50-</u>
Clozapine-N-Oxide	C18H19CIN4O	342.12474		<u>34233-69-7</u>	21169512		<u>1902</u>		HMDB60900		
Diethylcarbamazine N-Oxide	C10H21N3O2	215.16338		<u>34812-73-2</u>			2005		HMDB60817		40 60 80 100 120 140 160 180 200 220 240 260 280 300
5-Hydroxydantrolene	C14H10N4O6	330.06003		<u>52130-25-3</u>			<u>1927</u>		HMDB60776		4551 MS2 OTOE EV_150 CE_20 (M_4U)
Citalopram-N-Oxide	C20H21FN2O2	340.15871		<u>63284-72-0</u>			<u>1784</u>	<u>C16607</u>	HMDB60654		100-1 245.04762
Malaoxon	C10H19O7PS	314.05891		<u>1634-78-2</u> 96541 79 9			1060	C0/498	HMDB60627		토 50 100,00 207,05020
Albendazola gulfona	C22H24N2O5	396.16832		75184.71.3			795	C16626	HMDB60561		210.0/8// 287.05820 5.06 8.53
Albendazole sulfoxide	C12H15N3O3S	281.08341		54029-12-8	75767		794	C02809	HMDB60560		
Dihydromorphine	C17H21NO3	287.15214		509-60-4			2095	<u>C11782</u>	HMDB60548		m/z
Desmethylzopiclone	C16H15CIN6O3	374.08942		<u>59878-63-6</u>			<u>3077</u>		HMDB60541		+ESI MS2 QTOF FV=150 CE=40 (M+H)+
Norverapamil	C26H36N2O4	440.26751		<u>67018-85-3</u>			<u>3010</u>		HMDB60540		± 100 - 210.07877 245.04762
Di-demethylcitalopram	C18H17FN2O	296.13249		<u>62498-69-5</u>			<u>1783</u>	C16609	HMDB60472		50- 24 30 139.98976
Codeine-6-glucuronide	C24H29NO9	475.18423		<u>20736-11-2</u>			<u>71243</u>	C16577	HMDB60464		
Cephalosporin C	C16H21N3O8S	415.10494		61-24-5	17000	65536 19343	43890 44122	C00916 C12720	HMDB60450		40 60 80 100 120 140 160 180 200 220 240 260 280 300
1 5-riuo-5-deoxvundine	C3H11FN205	240.0052		3034-03-0	1/322	10343	44123	012/38			m/z

Applications and Examples – With Agilent QTOF Technologies

For Life Sciences Research Only, Not for Diagnostic Purposes

Sun

Application Note

Lipid Profiling Workflow Demonstrates Disrupted Lipogenesis Induced with Drug Treatment in Leukemia Cells

Figure 1. Experimental design for studying effects of drug treatments on cancer cell lipidome.

20 + years of Metabolomics Research and Method Development

Resolve Isobars with Chromatography (RP C18) Match to MSMS Library (Lipid Annotator Supported)

Specific Changes Visualized

Figure 6. MPP lipid matrix of 137 phosphatidylcholine (PC) lipid features across BaP treatment and vehicle control sample replicates. Box and whisker plots of two selected PC features are shown to the right.

Lipid Class Analysis and Relative Quantitation of Global Data (How you use the data)

Figure 5. MPP lipid class matrix of total normalized lipid class abundances across BaP treatment and vehicle control sample replicates. The color range represents the sum of normalized, transformed abundances for all lipid features within a lipid class.

Figure 8. Elucidation of an unknown differential feature with the untargeted workflow. (A) MPP Volcano plot from a moderated t-test with Benjamini-Hochberg FDR multiple testing correction for BaP treatment versus vehicle control. Significant features (fold change cutoff >1.5, p-value >0.05) are colored in blue (annotated lipids) and red (unannotated features). The feature of interest (m/z 339.2774 at 2.506) is circled in green. (B) Box and whisker plot of the feature of interest for the four drug treatment conditions. (C) MPP Kendrick mass defect (KMD) plot for the combined entity list of 513 annotated lipids with the list of 93 differential features (n = 565). Features that could not be annotated with the PCDL are shown in the first column in red. The zoomed region shows the alignment by KMD of the feature of interest with a group of Cer_NS lipids. (D) Cer_NS 18:2_2:0 candidate structure for the feature of interest.

Impact of Chromatography on Lipid Profiling of Liver Tissue Extracts

2015

Figure 3. Elution profiles of lipid classes from a liver lipid extract resolved with NP chromatography and analyzed in positive and negative ion modes. CL: cardiolipin; LPC: lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; PC: phosphatidylglycerol; PI: phosphatidylinositol; PS: phosphatidylserine; SM: sphingomyelin.

Lipids – Specific subclass of metabolomics – because of molecule class properties and extraction conditions Bioanalysis View

Lipid are present in classes that have concentrations and compositions (important for level of metabolism) Concentration = sum of the FAs for any given class (column) Composition

			LIPID CLASSES								
		ы	TAG	DAG	FFA	ЪС	Ы	LPC	Е		
	14:0										
	16:0	_								-	•
	18:0										
	20:0										
	24:0										
	14:1										
	16:1										
	18:1										
S	20:1										
G	18:2										
ΥA	18:3										
E	20:2										
E	20:3										
	20:4										
	20:5										
	22:4										
	22:5										
	22:6		4								

		LIPID CLASSES							
		GE	TAG	DAG	FFA	РС	ЫЕ	ГРС	LPE
	14:0								
	16:0								
	18:0								
	20:0								
	24:0								
	14:1								
	16:1								
	18:1								
S	20:1								
8	18:2								
A	18:3								
E	20:2								
FAI	20:3								
	20:4								
	20:5								
	22:4								
	22:5								
	22:6								
						t	/		

When FA metabolism is altered there is the ability to change FA composition of all classes

When lipid class metabolism is altered there is the ability to change all members of the class Quantitative Determination of a Panel of Endogenous Steroids in Human Serum by LC/MS/MS

Using an Agilent Supported Liquid Extraction (SLE) Chem Elut S Plate

Figure 2. An LC/MS/MS chromatogram of 1 ng/mL steroids in serum prepared using the Agilent Chem Elut S supported liquid extraction method.

Integrate metabolomics with other omics

While genomics, transcriptomics, proteomics, and metabolomics are in wide use in both industry and academia, these experiments—performed alone—are often insufficient to uncover meaningful correlations amid the high level of noise omics experiments typically generate. Integration of data from multiple omics can provide enough constraints to greatly improve the signal-to-noise of the analysis. The Pathway Architect module of Mass Profiler Professional allows either single omics analysis or joint analysis of multiple omics, enabling you to discover commonly affected pathways and aid in your ability to find reliable answers more quickly.

Gene Expression GeneSpring GX

Agilent's GeneSpring provides powerful, accessible statistical tools for intuitive data analysis and visualization. Designed specifically for the needs of biologists, GeneSpring offers an interactive environment that promotes investigation and enables understanding of Transcriptomics, Genomics, Metabolomics, Proteomics and NGS data within a biological context.

GeneSpring allows you to quickly and reliably identify targets of interest that are both statistically and biologically meaningful. For Research Use Only.

Not for use in diagnostic procedures.

REQUEST QUOTE

Thank you

Move into Q&A Session

